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difference method or other higher-order methods, the overall scheme is proved to be unconditionally
stable and provides much more accurate numerical solutions. The numerical errors and convergence
rates of the solution are tested by several examples. Results show that the new method is promising.
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1. Introduction

The Neumann (or insulated) boundary condition is often
encountered in engineering applications, such as ultrafast heat
transfer [ 1-7] and reaction-diffusions [8-12]. The conventional finite
difference schemes for the Neumann boundary condition are either
first-order accurate or second-order accurate but need a ghost point
outside the boundary [13-15]. We have found that, when the first-
order accurate scheme for the Neumann boundary condition is
employed, it affects the accuracy of the overall numerical solution
evenifasecond-order numerical scheme is employed at interior grid
points. Also, when the second-order accurate finite difference
scheme (or the ghost point method [15]) for the Neumann boundary
condition is employed, the overall scheme may not be uncondi-
tionally stable (that is, there are some restrictions on the mesh ratio).
Furthermore, the ghost point method may be difficult to apply for the
multi-dimensional disk or sphere in cylindrical or spherical coordi-
nates. Recently, Liao et al. [12] have proposed a third-order compact
finite difference scheme for the Neumann boundary condition.
However, the scheme becomes complicated when applied to multi-
dimensional cases or to cylindrical and spherical coordinate cases.
Zhao and Dai [16,17] have also developed a second-order combined
compact finite difference scheme for the Neumann boundary
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condition. When applying it to cylindrical and spherical coordinate
cases, we found that it reduces the order of accuracy in numerical
solutions. In this study, we consider one-dimensional heat conduc-
tion problems with the Neumann (or insulated) boundary condition
in Cartesian, cylindrical, and spherical coordinates, respectively, and
present a kind of new and accurate finite difference schemes for the
Neumann boundary condition. Combined with the Crank-Nicholson
finite difference method or the higher-order compact finite differ-
ence method, the overall scheme provides much more accurate
numerical solutions. Furthermore, the overall scheme can be proved
to be unconditionally stable. The numerical errors and convergence
rates of the solutions are then tested by several examples.

2. Finite difference schemes

In this section, we consider the Neumann boundary condition in
Cartesian, cylindrical, and spherical coordinates, respectively, and
develop the corresponding finite difference schemes.

CASE 1. We first consider a one-dimensional heat conduction
equation with initial and Neumann boundary conditions in Carte-
sian coordinates:

aT(x,t) , 9°T(x,t)
C T = k 2 +s(x,t), O0<x<LO<t<ty, (1a)
T(x,0) = To(x), xe[0,L], (1b)
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Nomenclature

,a, b, b", ¢, c" constants

volumetric heat capacity [J/(m3K)]
l-norm error

spatial grid size

conductivity [W/(mK)]

length [m]

number of grid points

finite difference operator
radius coordinate

grid point along the r-direction
source term [J/(m>s)]
temperature [K]

Q

Sz AESTmA

T numerical solution of T at (jh, nAt)
t, to time [s]

Cartesian coordinate
Xj grid point along the x-direction

Greek symbols

Vi backward finite difference operator
At time increment

04, 0> constants

Subscript, superscript

j the jth grid point

n the nth time level

aT(0,r)  oT(L,1)
ox  ox

where T(x, t) is temperature, C is heat capacity, k is conductivity, and
s(x, t) is a source term. To solve the above problem using the finite
difference method, one may employ the Crank-Nicholson scheme
for Eq. (1a) as follows:

=0, tel0,t), (1c)

T?‘H—l _ 2Tﬂ+1 + T;’H—l
J

Tn+1 _n
J I _k j—1 Jj+1 +k

At 2h? 2h2
n+4 .
+s; 7, 1<j<M-1, (2)

T 2T T

C

where T} is the numerical approximation of T(jh, nAt). Here, h and
At are the spatial and temporal mesh sizes, respectively, and x; = jh,
0 < j < M such that Mh = L. On the other hand, the boundary
condition, Eq. (1c), can be discretized by using the conventional
finite difference method [13-15] such as the first-order accurate
scheme

To =T, Tu=Ty, (3)
or the second-order accurate scheme
" =T, Tysr = Ty (4)

where T"; and Ty, ; are the fictitious temperatures outside the
boundary. It should be pointed out that in order to employ Eq. (4),
one must couple it with Eq. (2) by letting j = 0 and M, so that TT{l
and Ty can be eliminated.

To obtain a new finite difference scheme for the Neumann
boundary condition, Eq. (1c), we first design a mesh, where the
distance between the actual left boundary and x; is assumed to be
61h, and the distance between the actual right boundary and x is
62h, as shown in Fig. 1. We then express the finite difference
approximation of 82T (x, t)/8x2 at x;, which is the point next to the

left boundary, as follows:

0°T(x1,t)  a 10T (x; — 01h,t)
b a2 h—z[T(Xz, T, 0l —5 = (5)
Oh 0,h

of e fens] o e

§—' L L L L L L J
X X2 A3 X1

h n 3 Ty "n

Fig. 1. Mesh and locations of grid points.

where q, b, 67 are constants to be determined. If Eq. (5) is rewritten
as follows:

2

T 1 TC G _ S0 Tt ()
one may see that the above equation is an improvement of the
combined compact finite difference method (where the first and
second-order derivatives are included [16-18]) by introducing the
parameter 64 in order to raise the order of accuracy. The first-order
derivative is kept in Eq. (5) so that the Neumann boundary condi-
tion can be applied directly without discretizing. Expanding each
term of Eq. (5) into Taylor series at x1, we obtain the right-hand-side
(RHS) result of Eq. (5) as follows:

b

RHS — % [ WTuxr.6) + T, )+ T (0. 0)
) x(X1,¢) 5 Txx(X1, +€x3(1,

1 63 h2 )
— E TX(X],t) — 0]hTXX(X],t) —l—Tsz (X],t) + O(h )

a

1 a h
= pla = 1Tx(x1,0) + [5+ 01| Tuc(x1,0) + 5[5 — 67| To (xa1.0)

+0(h?). (6)
Matching both sides gives

1 V3 V3
=4 —  f#; === 7
b=s+5 =3 (7)
Thus, substituting the values of a, b, 61 in Eq. (7) into Eq. (5) and
dropping the truncation error O(h?), we obtain a second-order
finite difference approximation at x; as

a=1,

PT(xy,t) _ a
ox2 bh2
Symmetrically, we can express the finite difference approxi-

mation of 82T (x,t)/dx% at xp, which is the point next to the right
boundary, as

l 6T(x1 — 191h, t)

[T(X27 t) - T(Xl ’ t) - bh T (8)

2T(xp,t) 1 3T(xy + boh,t) a
b—2 =1 = — T Xm, £) = T(xn-1, D)),
9

where a*, b*, 6, are constants to be determined. Again, matching
both sides in Taylor series gives

a=1 b= +?, 02:ﬁ (10)

?7

N =
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and hence a second-order finite difference approximation at xy; for
the right boundary can be obtained as

O?T(xp,t) _ 1 0T(xy+02h,t) a
2  b'h X b'h2

If the number of interior grid points M is given, then the grid size
and the coordinates of the grid points can be determined as follows:

[T(xn,t) = T(xp—1,0)].  (11)

L
he——— X =

M+0]+02—17 O_1+0])h7

j=1--M. (12)

Using the Neumann boundary condition, Eq. (1c), one may
simplify Eqs. (9) and (11) to

0°T(x1,t) a
%:W[T(Xz,t) = T(x1, 1), (13a)
02T (xp, t a’

a(xlzw )~ - 5l (s £) = T(xum—1, )] (13b)

It should be pointed out that the Neumann boundary condition
is directly used in Eq. (13) without discretizing. Thus, the Crank-
Nicholson scheme for Eq. (1a) at x; and xj; can be written as
follows:

Tn+1 _Tn a Tn+1 _ Tn+1 a T” n
gt =k g Ky g s (142)
Tn+1 _Tn Tn+1 Tn+1 at Tn "
M M _ M-1 'H‘
CiAt = _kF 52 kF o2 +sy 2 (14b)

Hence, a new second-order accurate Crank-Nicholson finite
difference scheme consists of Eq. (2) for interior grid points Xx;
wherej=2,...,M — 1, and Eq. (14) for two grid points x1 and xp;. It
can be seen that the truncation error of the new scheme has an
order of At + h? at all grid points (x;,ty(1/2)).j = 1, M.

CASE 2. We now consider a one-dimensional heat conduction
equation with initial and Neumann boundary conditions in cylin-
drical coordinates:

oT(r,t) ko [/ oT(r,t)
C ar rar(r ar +s(r,t), 0<r<L,0<t<ty, (15a)
I(r,0) = To(r), rel0,L], (15b)
oT(0,t)  oT(L,t)

T = o = 0, te[0,tp]. (15¢)

To obtain a second-order accurate finite difference scheme for
the Neumann boundary condition, we similarly design a mesh,
where the distance between the actual left boundary and ry is
assumed to be f#1h, and the distance between the actual right
boundary and ry is 62h, as shown in Fig. 1. We then express the
finite difference approximation of (8/dr)(r(dT(r,t)/or)) at r1, which
is the point next to the left boundary, as follows:

0 aT(r7t) 1 aT(ﬁ 01h,t)
bar(Pr )~ Tt ~Tra0) = R, 16)

where a, b, 61 are constants to be determined and r3 , =ry +(h/2). If
each term of Eq. (16) is expanded into Taylor series at r1, we will
obtain the left-hand-side (LHS) and right-hand-side (RHS) results
of Eq. (16) as follows:

LHS = bTy(rq,t) + bri Ty (r1,t) (17a)

and

RHS =-Lr, | kT, . s
7?’% r(rq,t) +7 (11, £) +€ a(r1,t)

1 02 h?
gl |:Tr(rlvt) — 01hTy (9, 1) +%

Ty (r1,t) | +O(h?)

1 a
= E[ar% — r]:| Tr(r1 s t) + brg +n 01}Trr(r1,t)
hra
+§[3 rle]} Ty (rq, t) + O(h?). (17b)
Matching both sides gives

%(ar% —r1) = b, (18a)
a
zr% + 1 19] = br1, (18b)
a
3 rlﬁf = 0. (18¢)

Dividing Eq. (18a) by Eq. (18b), replacing ars,, with 3r167 from
Eq. (18c) and then using the fact r; = #1h, we obtain a quadratic
equation with respect to 67 as

607 — 30, —4 = 0. (19)

Solving the above equation for #; with #; > 0, one may obtain

01 _ 3+ \/‘1057 g _ r101 . (20)

L RS

Thus, a second-order finite difference approximation at r; can be
obtained by dropping the truncation error O(h?):

-0
() =g T2, 0) = Ty, )] = gy TSR0,

(21)

We have noted that #; > 1 in Eq. (20) while 6; <1 in Eq. (7). This
is probably because, in the cylindrical coordinates, the term
(8/0r)(r(dT(r,t)/or)) = rTrr(r, t) + Tr(r,t) includes the first-order
derivative of T(r, t).

Symmetrically, we express the finite difference approximation
of (8/ar)(r(dT(r,t)/dr)) at ry, which is the point next to the right
boundary, as

ATy _ 1 oT(ry + 0,h,t) a
b—( ar )MfETMT 2'M-4 1[T(rm, t)

- T(erlvt)]v (22)

f, are constants to be determined and
(h/2). Again, matching both sides in Taylor series

where a*, b"

TM—(1/2) = T™M —
gives

%(rM - a*rM%) =b", (23a)
a* *

2 + 5Ty = brm, (23b)

rMH% — %er% = 0. (23¢)
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D1v1d1ng Eq. (23a) by Eq. (23b) and then replacing a” M—(1/2) by
3ryf3 from Eq. (23c¢), we obtain a quadratic equation with respect to
05 as

(6ry; + 3h)03 + 2hb, — 21y = 0. (24)

If the number of interior grid points M is given, then the grid size
and the coordinates of the grid points can be determined as follows:

L .
he = r= (-

M0 40,1 1+6ph, j=1-M  (25)

Substituting Eq. (25) into Eq. (24) and then solving for 6, with
f> > 0, one may obtain

V11620, +2M—1)(6; +M—1) -1
3020, + 2M — 1)

0y = , and

a vt
R LY (26)

9 4 1Y’
nay(3+3)
and, hence, a second-order finite difference approximation at ry
can be obtained:
oT(ry +0,h,t)  a
ks LU T, 0

aT(r N _ 1 .
6r or )y b'h or T bh2 M-
—T(rm-1,1t)]- (27)

Using the Neumann boundary condition, Eq. (15c), one may
simplify Egs. (21) and (27) to

%(raTgr’ t))l ~ iy (T(r2,6) = T(r, ), (28a)
S () = - om0 - Ty 0l (28b)

Thus, the Crank-Nicholson scheme for Eq. (15a) can be written
as follows:

T+ _n a TM oo+l ¢ TI-TI
h 4 _,a b —4H a4 .
T kbrl T kbn Bonz 2h2 L1, (29a)
Tﬂ+1 ™ 1
J J n+1 n+1 . il
C At fk2h2 {Hz (TJ+1 T, ) -1 <T] _ Tj-1 )]
n n
+k2h2r [j+%(T]+1 T; ) - Tj,%(Tj - qu)]
w5 2<jM -1, (29b)
Tn+1_Tn a Tn+1 _Tn+1 a m_Tn
N = R e T Tu=Tha, ol
C At I<b*rer—% 2h2 ’b* Ty Mo ML

(29¢)

Again, it can be seen that the truncation error of the new scheme
has an order of At + h? at all grid points (rj,tny(1/2))J=1,",M.

It should be pointed out that, in the ghost point method [13-15],
the term (1/r)(d/0r)(r(8T(r,t)/dr)) in Eq. (15a) is first evaluated
based on the boundary condition, Eq. (15c¢), to obtain

. . 92 2
im|(1/r)(@/0r) (r(@T(r, £)/or)] = lim [F740 + PIEO] — 5T700

ar?

at the boundary point r = 0, and then the term 2(82T(0, t)/0r2) is
discretized to be (1/h?)[(T{+! — 2T8+1 4+ T 1) 4 (T} — 2TF + T7,)),
where T_1"*1 = T;"1 and T_1" = T;". However, the ghost point

scheme cannot be generalized to multi-dimensional heat conduc-

tion cases such as (8T(r, ¢,t)/ot) = (C/r)(8/0r)(r(dT(r,¢,t)/0r))+

(C/r)(@T(r.¢.t)/0¢%). because lim|[(1/r*)(@T(r,¢.t)/0¢%)] is
r—

difficult to find. On the other hand, our present scheme can be
easily generalized to the multi-dimensional heat conduction
equation because we avoid the approximation at r = 0.

CASE 3. We consider a one-dimensional heat conduction equation
with initial and Neumann boundary conditions in spherical
coordinates:

aT(r,t) k8 ([ ,0T(r.t)
= <
C T 29r\" ar +s(r,t), 0<r<L,0<t<ty, (30a)
T(r,0) = To(r), rel0,L], (30b)
aT(0,t)  OT(L,t)
or = o =0 tel0.fol. (30c)

Similarly, we use a mesh as shown in Fig. 1 and express the finite
difference approximation of (8/0r)(r*(9T(r,t)/dr)) at rq as follows:

bﬂ(rzam’t)) & P2[T(ryt)—
1

—0] Ar,t)
or or T h?3 ’

1 ,07(ry
h'l or

T(ry,0)] -7
(31)

where q, b, 6 are constants to be determined and r3,, =71 +(h/2).
Again, if each term of Eq. (31) is expanded into Taylor series at r, we
will obtain the left-hand-side (LHS) and right-hand-side (RHS)
results of Eq. (31) as follows:

LHS = 2br Ty (ry,t) + briTy(ry,0), (32a)
h? h3
RHS —h2r3 hTr(rL ) + Trr(rl t) + Tr3 (r]7 )
1, H%hz 2
—Erl Tr(rl,t) — H]hTrr(ﬁ,t) +TTr3(T],t) +O(h )
1
= [ar;2 - r%} T (r1,t) + %r%Z + 1207 | T (rq, 0)
+ g B 7y 02] Tis (r1,t) + O(h?). (32b)
Matching both sides gives

%(ar%2 - r%) = 2bry, (33a)
§r3 + 130y = br?, (33b)
ar3 -1y 242 _ 0. (330)

33

Dividing Eq. (33a) by Eq. (33b) and then replacing ar3 12 with
31%6% from Eq. (33c), we obtain a quadratic equation with respect to
01 as

02—0,-1=0 (34)

Solving the above equation for #; with #; > 0, one may obtain

V5+1 a 13

(35)
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It can be seen that §; >1 in Eq. (35), which is similar to the one in
Eq. (21). Thus, a second-order finite difference approximation at rq
can be obtained by dropping the truncation error O(h?):

9(#Muﬂ):JL€UW%Q—EmJﬂ
1

or or bh2 '3
1 26T(rl — 01h,tn)
B (36)

Symmetrically, we express the finite difference approximation
of (8/0r)(r2(dT(r,t)/0r)) at ry, which is the point next to the right
boundary, as

y 0 (2070 15 0T(w +65h,0)
or or )y hM or

*

- %2"1%/17%[7‘("% t) = T(ry-1. 1)), (37)

where a*, b", 6 are constants to be determined and ry_(1/2, =
ry — (h/2). Again, matching both sides in Taylor series gives

E(rM —a er%) = 2b 1y, (38a)
12,0, +% 2, = b, (38b)
L (38¢)
M2 T3 M

Dividing Eq. (38a) by Eq. (38b) and then replacing a*rﬁ,,f(l/z)
with 3§63 from Eq. (38c), we obtain a quadratic equation with
respect to f, as

(3ry + 3h)0% + 2hb, — 1y = 0. (39)

If the number of interior grid points M is given, then the grid size
and the coordinates of the grid points can be determined as follows:

L

h= g g =0 1+00h j=1M (40)

Thus, we obtain

_\/4+3(19] +M)(01+M—-1)-1 a;F rl%/lez
o 3(0] +M) a '

)

Hence, the Crank-Nicholson scheme for Eq. (30a) coupled with
Eq. (30c) can be written as follows:

1 1 1
CT_?"’ — T{l _ ki r32T£H— — T.'l1+ N ki rSZTS — T{l T'H’%
At brz 2 2h2 br? 2h2 L
(42a)
T n 1
J J _ 2 n+1 n+1) _ .2 n+1 n+1
N T [rm(ml ) - (T )]

+s}”2, 2<j<M-1, (42b)
1 * 1 1 *
TI?/IJr — TII\I/I - _k a r2 Tlr\bl+ - TI'\1/I+—1 _k a r2 T11\1/I - TI@I—]
At brz, M3 2h2 b'ry M 2h2
+sp (420)

Again, it can be seen that the truncation error of the new scheme
has an order of At + h? at all grid points (1}, ty(1/2)).J = 1, M.

It should be pointed out that, in general, there is no boundary
condition at the center r = 0. Therefore, the value of Ty" at center
needs to be determined. To this end, one may follow the idea in
[14], multiply Eq. (30a) by 1% and then integrate it over the interval
[0, €], where ¢ is a small constant. This gives

& & &
() 5 [0 20T(r,1) / 5
/C—at redr = k/ar(r a7 dr+ [ s(r,t)redr. (43)
0 0 0

Replacing aT(r,t)/ot and s(r,t) in Eq. (43) with those corre-
sponding values at the center r = 0, and then calculating the inte-
grals in Eq. (43), we obtain

3
ATO0.0 & ) 50T(e,)

ot 3 or

By choosing ¢ = h/2, a second-order finite difference approxi-
mation at the center r = 0 can be obtained as

+5(0, t); (44)

Tn+1 _Tn Tn+] _ Tn+1 Th _ TN 1

0 0 _ gkl 0 k1 0 n+3 4
AL 6k o + 6k 5h +55 7. (45)
For this case, one may choose #; = 1 and hence the scheme

consists of Eq. (42b) with 1 <j < M — 1, Eq. (42c) and Eq. (45).

C

CASE4. The idea lying behind the above method can be applied to
develop higher-order compact finite difference schemes where the
Neumann boundary condition is considered. For example, in CASE
1, if the second-order derivative Ty is approximated by a fourth-
order implicit compact finite difference scheme [16,19]:

1 1
ﬁTXX (Xj,] N t) + Txx (Xj7 t) —+ ﬁTxx (X]'Jrl7 t)

= o [T(51.6) ~ 2T(5.0) + T(x.1,6)], (46)
at the interior points x;, 1 < j < M — 1, then the values of Ty at the
boundary points should be provided, which are usually inconve-
nient to obtain. To overcome this difficulty, we may employ
a combined compact finite difference approximation at x; based on
the mesh shown in Fig. 1:

1
ATxx(X1,t) + bTx(X2,t) = _ETX(X1 —01h,t) +h*C2[T(X2, t) —T(x1,0)],
(47)

where a, b, c and 6, are constants to be determined, and §; > 0. We
expand each term of Eq. (47) into Taylor series at x; and obtain the
left-hand-side (LHS) and right-hand-side (RHS) results of Eq. (47)
as follows:

2

LHS = aTy(x1,t) + b | Tex (X1,£) + hTy (xl,t)+h7Tx4(x1,t) +0(h?)

2
= (a+b)T(x1,t) +bhTa (x1,1) +bh7Tx4 (x1,6)+0(h3), (48a)

and
1 02h2 HE
RHS = —H [Tx(xl 7t) _0] hTXX(xl 7t) + ]2 TX3 (X] 7t) - ]6 TX4 (X] 7t):|
c h? h3 h#
i [PT0,+5 Tia30.)+ To 00,0)+ T30,
+0(h?)
1 c 0 c
= (€= DTy 0)+ (01 +5) Tea¥1.0)+ (=545 hTo (x1.0)

3
+ (0—1+£)h_2Tx4 (x1,0)+0(R). (48D)

3 12/ 2
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Matching both sides gives

c—1=0, (49a)
02

b = 77+6, (49c¢)
03 c

From Egs. (49a), (49¢) and (49d), we obtain a polynomial of
degree 3 with respect to 67 as

403 1607 -1 = 0. (50)

Solving the above equation for #; with #; > 0, one may obtain
6; = (v/3 —1)/2 and hence

V3 1 V3 1
a=—4+3 b_Tf? c=1 (51)
Thus, a third-order combined compact finite difference scheme
at x; can be obtained by dropping the truncation error O(h%) as

1
— gl - b1h, f)+ [T(Xzy)

—T(x1,0)]. (52)

aTxx(X‘l, t) + bTxx(xz7 t) =

Similarly, we employ a combined compact finite difference
approximation at xy;, which is the point next to the right boundary, as

y « 1 c’
b Tx(Xm-1,t) + @ Tax(Xm1, ) =T (X + boh,t) — W[T(XM» t)
_T(folvt)L (53)
where a*, b*, ¢* and 6, are constants to be determined, and obtain
a third-order compact finite difference scheme at xy

M

* * 1
b Tae(Xpy_1.t) +a TXX(XM,t)zETX(xM+02h,t)—;—2[T(XM,t)

7T(XM—]7t)]7 (54)
where
vV3i-1 . V3 1 . V31 .
0, = 5 @ =4 T3 b =23 ¢ =1. (55

If the number of interior grid points M is given, then the grid size
and the coordinates of the grid points can be determined as follows:

L
- = xi=(—1+6 i—1.-- M.
h M+(9]+02—17 x_) (J ‘l+ 1)h7 ] ]7 7M (56)
Hence, a higher-order accurate Crank-Nicholson type of
compact finite difference scheme for the heat conduction problem
given in CASE 1 can be written as

Tn+1 Tn Tn+1 Tn c Tn+1 Tn+1 cTh_Tn 1
1 _ 1 2 1 N+
aC i +bC2 7 Ih—2 3 +kh—2 515 2
(57a)
n+1 n n+1 n n+1 n
Cqu I A | n CTj T CT]H AR
10At At 10At
n+] n+1 n+1 n n n
7kiT 2Tj +T]H kinlisz +Tj+1
5h2 2 5h2 2
1
+s57%, 2<j<M-1, (57b)

1 1
pr L Ty T T

At At
c Th+1 _ Tn+1 c T” Tn 1
= ki 5 - kh_2 3 M-1 g2, (57¢)

It can be seen that the truncation error of the new scheme
has an order of At> + h* at interior grid pomts Xj,tay12))s J =
2,-,M —1 [16,19], and an order of At®* + h> at grid points x;
and xM Similarly, one may apply this method to the cylindrical
and spherical coordinate cases and develop higher-order combined
compact finite difference schemes for Neumann boundary
conditions.

3. Stability

We now show that the above obtained schemes are uncondi-
tionally stable. Because of the limit on text length, we only show
that the scheme developed in CASE 3 is unconditionally stable. One
may use a similar argument to obtain that the new numerical
schemes in CASES 1 and 2 are unconditionally stable. For simplicity,
we first introduce two finite difference operators:

T Y q=nn+1. (58)

We then multiply Eq. (42a) by 2r7h2[T+1 + T”] Eq. (42b) by
2rfR[TH! + 1,2 <j <M - 1Eq. (42c) by 2 hE (T 4 TR, and
add all of them together. This gives

R (=) R S (- ))

() )
= h:g Pe[ Tt TR [T 4 T7| 4 130 T30 4 T3

(11t 1) =y Ve [T+ TR [T+ T
+ h{z”rfs';*z [Tt Ty + 3 225 T 4 7]
j=

N

+ zngsL*z [Tt + T3] } (59)

Denoting U; = T'""! + T} for the purpose of simple notation,
the first three terms (FTT) on the right-hand-side can be
simplified to

FIT :EX;{G+%[%+1 — U] =y [Uy - Uy }U +13V:U Uy
Jj=
rﬁl 1VrUM UM
M ) M-1 )
:Zr] ;VU U] 1721’] ;VU U+T3VU2 Uq
j=3 j=2
M M
— Ty g Vil Un = Y17,V Z 749U Uy
j=2 =
M ) M ) ; 2
= Y2 VUV = —h Y (V[T 4T ) (60)
j=2 j=2
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By Cauchy-Schwartz’s inequality (2ab < ea?
we have

+1b2,¢ > 0 [20]),

25],7+% P;?H_] n Tjn] < C[Tj”“ + T,n} 2+% {5”+2:|

<ac(([m T

for any j. Substituting Eqs (60) and (6
the negative term —h ZJ 2 r 1 /2>(
can simplify Eq. (59) to

ﬂ%WHm%WWNWD

qr\lﬁ
.—l

+r’icb ([m] - [m]) <
+2hcz 2 ([ |+ [m]) +2hcb 4 ([ +[m))
+h (9@ [s] +le s ”*2] *rz [s,’(jzr). (62)

j=

ancht (1) '+ 1)

Multiplying Eq. (62) by At and letting

F(n)=2hC (9& [T{‘] y le [T"] 2+b—rﬁ4 [T,’\},] 2) :
j=2

(63a)

o=t (S ST IR o

Eq. (62) can be further simplified to

1+A A
Fn 1) <3 F () 41 ()
1+At 1+At At At
=1 At{l af (™ 1)+1—At(p(”_1)}+ —ar?™
14+A6\"H1 At 1+At  /1+A0\2
= S(17At) FO x| 1A <I—At>

1+AR\"
e (1) | s oo
1+At n+1
= (1—At)

Using the inequalities (14-¢)" <e™ for ¢ > 0 and (1— ) T<e2
for 0<e<1/2, we obtain (1+At)"1 <eMDA and (1 —Af)~! <28t
and hence, when At is sufficiently small, the solution to the present
scheme satisfies

F(0) + max @(k)} . (64)

0<k<n

F(Tl + 1) < e3(l1+1)At

F(0) + 0max <D(k)}

<k<n

< e3t0

F(0) + max dﬁ(k)}, (65)

0<k<n

for any 0 < (n + 1)At < to. Hence, for any 0 < nAt < tg, we obtain

2C (Zr% [T?] g ; ? [Tjn] 2+Z—r,%,, [T,’C,,] 2)
<32 (Z i (1] 2+ |

+e3 max =

0<k<n—-1C

o
-~
QT
=
EAN)
[ %]
— =

i
e
o
N}
+
i
i
o
+
Q | o
*
=l
—
<=
D=
—
\—/
—
[e}}
[*)}
=

implying that the scheme is unconditionally stable with respect to
the initial condition and source term.

For the stability analysis of the higher-order accurate compact
finite difference scheme, Eq. (57), one may use a very similar matrix
analysis as described in [16] and obtain that the scheme is
unconditionally stable. We omit the proof here because it is quite
straightforward.

4. Numerical examples

To verify the accuracy of our numerical schemes, we first
consider a simple scenario as follows:

aT(x,t)  0*T(x,t)

ot = a2 O0<x<1,t>0, (67a)
T(x,0) = cos(mx), xe[0,1], (67b)
oT(0,t)  0T(1,t)

ox  ax 0, 20 (67¢)

where the analytical solution is T(x,t) = e-™¢ cos(mx). We
employed the Crank-Nicholson scheme, Eq. (2), with the first-order
finite difference scheme for the Neumann boundary condition,
Eq. (3); the Crank-Nicholson scheme, Eq. (2), with the new second-
order finite difference scheme for the Neumann boundary condi-
tion, Eq. (14); and the higher-order compact scheme, Eq. (57), to
solve the above problem, respectively. Since these three schemes
are implicit, the Thomas algorithm [14] was used for solving the
obtained tridiagonal linear systems.

Because the analytical solution T(x, t) becomes very small when t
is large, the maximum of l-norm errors of the numerical solutions
as compared with the analytical solution was computed for
0 < t < 1 based on the formula

M 3
— exact
E(M,At) = 0<£r41|e[1§]'0\j ]E { — Texact(x;, tn)] . (68)

To obtain the convergence rate with respect to the spatial
variable, we may assume that E(M, At) = O(At? + h9). If At is
small enough, then E(M, At) = O(hY). Consequently, E(M,At)/
E(2M,At)=29 and hence q=log,[E(M,At)/E(2M,At)] is the
convergence rate with respect to the spatial variable. Likewise,
p=log,E(M,2At)/E(M, At)] is the convergence rate with respect to
the temporal variable.

In our computation, we first chose the number of grid points to
be M = 51, 101, and 201 for the Crank-Nicholson scheme with Eq.
(3), and the number of interior grid points to be M = 51, 101, and
201 for the Crank-Nicholson scheme with Eq. (14). On the other
hand, we chose a smaller number of interior grid points to be
M = 11, 21, and 41 for the higher-order compact scheme since it is
higher-order scheme. For all three cases, the time increment was
set to be At = 107% and log, [E(M, At)/E(2M, At)] was calculated for
the convergence rate with respect to the spatial variable.

Table 1 shows the maximal l,-norm errors of the numerical
results and convergence rates when 0 < nAt < 1.0.It can be seen from
the table that the convergence rate of the Crank-Nicholson scheme
with Eq. (3)is about 1.0 and the one for the Crank-Nicholson scheme
with Eq. (14) is about 2.0, while the higher-order compact scheme
gives the highest convergence rate. By comparing the maximal
L-norm errors of solutions in Table 1 among these three schemes,
we can see that the Crank-Nicholson scheme with Eq. (14) provides
much more accurate solutions than the Crank-Nicholson scheme
with Eq. (3) and the higher-order compact scheme gives excellent
solutions by using a smaller number of grid points.
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Table 1
Maximal L-norm errors, E(M, At), and convergence rates when At = 107° and
0 < t < 1.0 for the first scenario.

Table 3
Maximal l,-norm errors, E(M, At), and convergence rates when (a) At = 107, (b)
M = 1,000, 001, and 0 < t < 1.0 for the second scenario.

(@)

(a)

Grids CN with CN with CN with CN with Grid CN with CN with Scheme Scheme

Eq. (3) E(M, At) Eq. (3) rate Eq. (14) E(M, At) Eq. (14) rate Eq. (3) E(M, At) Eq. (3) rate Eq. (29) E(M, At) Eq. (29) rate
51 1.03041 x 1072 - 8.03048 x 107> - 51 1.99313 x 1072 - 1.91822 x 1074 -
101 520193 x 103 0.986 2.07331 x 10~ 1.954 101 9.98212 x 103 0.998 5.00483 x 10~ 1.938
201 261315 x 10~ 0.993 5.27770 x 10°° 1.974 201 499518 x 103 0.999 1.27701 x 107> 1.971
(b) (b)
Grids Compact scheme Compact scheme At CN with Eq. (3) CN with Scheme Scheme

Eq. (57) E(M, At) Eq. (57) rate E(M, At) Eq. (3) rate Eq. (29) E(M, At)  Eq. (29) rate

11 9.96415 x 10~° - 0.01 3.95927 x 1074 - 395949 x 107% -
21 6.59230 x 1077 3.918 0.005 9.89155 x 107> 2.001 9.89524 x 107> 2.001
41 5.84852 x 1078 3.494 0.0025 247098 x 107>  2.001 247348 x 107° 2.000

To obtain the convergence rate p, we chose the number of grid
points to be M = 1,000, 001 for the Crank-Nicholson scheme with Eq.
(3)or Eq.(14), and M = 1, 001 for the higher-order compact scheme.
On the other hand, the time increment was set to be At = 0.01, 0.005,
0.0025, respectively, and log, [E(M, 2At) /E(M, At)] was calculated. For
this case, we expect that p is about 2 for all three schemes because
they take the average of the numerical solutions in two time-levels
and hence are second-order accurate with respect to the temporal
variable. Table 2 shows the maximal l>-norm errors of the numerical
solutions and convergence rates when 0 < nAt < 1.0. As is expected,
we see from the table that the convergence rates obtained from all
three schemes are about the same and are about 2.0. Furthermore, it
can be seen from Table 2 that although the maximal l,-norm errors
obtained from all three schemes are about the same, the number of
grid points for the Crank-Nicholson scheme is about square of the
number of the grid points for the compact scheme.

The second scenario is considered to be a dimensionless heat
conduction in cylindrical coordinates:

oT(r,t) 1 9 ( oT(r,t) T w2

T _F§(rT +e sin(ar), O0<r<1,t>0,
(69a)

T(r,0) = cos(nr), rel0,1], (69Db)

0T(0,t) _ oT(1,t) _ 0. t>0, (69¢)

or or

where the analytical solution is T(r,t) = e~™¢ cos(wr). For this
case, the new scheme, Egs. (29a)-(29c), and the Crank-Nicholson
scheme, Eq. (29b), with Eq. (3) were employed to solve the above
problem, respectively. We chose the number of grid points to be

Table 2

Maximal ,-norm errors, E(M, At), and convergence rates when (a) M = 1, 000, 001
for both CN schemes, (b) M = 1, 001 for the compact scheme, and 0 < t < 1.0 for the
first scenario.

M = 51,101, and 201 for the Crank-Nicholson scheme with Eq. (3),
and the number of interior grid points to be M = 51,101, and 201 for
the new scheme. Again, the time increment was set to be At = 107,

Table 3(a) shows the maximal l,-norm errors of the numerical
results and convergence rates when 0 < nAt < 1.0. It can be seen
from the table that the convergence rate of the Crank-Nicholson
scheme with Eq. (3) is about 1.0, while the one for the new scheme
is about 2.0. Furthermore, by comparing the maximal l>-norm
errors of solutions between these two schemes in Table 3(a), we see
that the new scheme provides much more accurate solutions than
the Crank-Nicholson scheme with Eq. (3).

Again, we chose the number of grid points to be M = 1, 000, 001
for both schemes and set the time increment to be At = 0.01, 0.005,
0.0025, respectively, to obtain the convergence rate p. Results
indicate that the convergence rates obtained from both schemes
are about the same and are about 2.0, as shown in Table 3(b).

The third scenario is considered to be a dimensionless heat
conduction in spherical coordinates:

o(rt) _ 1 2(rzaT(r’ t)) +277Te”72‘ sin(nr), 0<r<1,t>0,

ot  r2or or
(70a)
T(r,0) = cos(nr), rel0,1], (70Db)
aT(0,t)  aT(1,t)
“or ~ or 0, t>0, (70c)

where the analytical solution is T(r, t) = e~™¢ cos(xr). For this case,
the new scheme, Eqs. (42a)-(42c), and the Crank-Nicholson scheme,
Eq. (42b), with Eq. (3) were employed to solve the above problem,
respectively. We chose the same conditions as those in the second
scenario and the result is shown in Table 4. It can be seen from Table

Table 4
Maximal l,-norm errors, E(M, At), and convergence rates when (a) At = 1075, (b)
M = 1,000, 001, and 0 < t < 1.0 for the third scenario.

(a)

(a)

At CN with CN with CN with CN with Grid CN with Eq. (3) CN with Scheme Scheme
Eq. (3) E(M, At)  Eq.(3)rate  Eq.(14) E(M, At)  Eq. (14) rate E(M, Af) Eq.(3)rate  Eq.(42) E(M, At)  Eq.(42) rate
0.01 2.10939 x 104 210422 x 1074 - 51 301995 x 1072 - 2.01446 x 104

0.005 523540 x 107> 2.011 5.18323 x 107° 2.021

101 1.50487 x 102 1.005 6.80595 x 107> 1.566

0.0025  1.27009 x 107>  2.043 1.21767 x 1073 2.090 201 751171 x 103 1.002 222334 x 10°° 1.614
(b) (b)
At Compact scheme Compact scheme At CN with Eq. (3) CN with Scheme Eq. (42)  Scheme

Eq. (57) E(M, At) Eq. (57) rate E(M, At) Eq. (3) rate E(M, At) Eq. (42) rate
0.01 2.11407 x 104 - 0.01 5.68601 x 1074 - 5.68765 x 1074 -
0.005 527988 x 107> 2.001 0.005 141817 x 10 2.003 1.41988 x 104 2.002
0.0025 1.31865 x 10~ 2.001 0.0025  3.53267 x 10> 2.005 3.55045 x 10> 2.000
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4(a) that the convergence rate of the Crank-Nicholson scheme with
Eq. (3) is about 1.0, while the one for the new scheme is about 1.6.
Again, by comparing the maximal l,-norm errors of solutions between
these two schemes in Table 4(a), we see that the new scheme provides
much more accurate solutions than the Crank-Nicholson scheme with
Eq. (3). Table 4(b) shows that the convergence rates obtained from
both schemes are about the same and are about 2.0.

5. Conclusion

In this study, we have presented a kind of new and accurate finite
difference schemes for the Neumann (insulated) boundary condition in
Cartesian, cylindrical, and spherical coordinates, respectively. Coupled
with the Crank-Nicholson finite difference method or the higher-order
compact finite difference method, the new scheme is proved to be
unconditionally stable and provides much more accurate numerical
solutions. The numerical errors and convergence rates of the solutions
are tested by several examples. Results show that the maximal ,-norm
errors of the numerical solutions obtained by the present method are
much smaller than those obtained by the conventional method, and,
also, the convergence rates of the present method are higher with
respect to the spatial variable. The method can be readily applied to
multi-dimensional cases. Further research will be focused on the
applications of the new method to practical engineering problems,
such as ultrafast heat transfer and reaction-diffusions.
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