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a b s t r a c t

The Neumann (or insulated) boundary condition is often encountered in engineering applications. The
conventional finite difference schemes are either first-order accurate or second-order accurate but need
a ghost point outside the boundary. Compact finite difference schemes are difficult to apply for multi-
dimensional cases or for cylindrical and spherical coordinate cases. In this study, we present a kind of
new and accurate finite difference schemes for the Neumann (insulated) boundary condition in Carte-
sian, cylindrical, and spherical coordinates, respectively. Combined with the Crank–Nicholson finite
difference method or other higher-order methods, the overall scheme is proved to be unconditionally
stable and provides much more accurate numerical solutions. The numerical errors and convergence
rates of the solution are tested by several examples. Results show that the new method is promising.

� 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

The Neumann (or insulated) boundary condition is often
encountered in engineering applications, such as ultrafast heat
transfer [1–7] and reaction-diffusions [8–12]. The conventional finite
difference schemes for the Neumann boundary condition are either
first-order accurate or second-order accurate but need a ghost point
outside the boundary [13–15]. We have found that, when the first-
order accurate scheme for the Neumann boundary condition is
employed, it affects the accuracy of the overall numerical solution
even if a second-order numerical scheme is employed at interior grid
points. Also, when the second-order accurate finite difference
scheme (or the ghost point method [15]) for the Neumann boundary
condition is employed, the overall scheme may not be uncondi-
tionally stable (that is, there are some restrictions on the mesh ratio).
Furthermore, the ghost point method may be difficult to apply for the
multi-dimensional disk or sphere in cylindrical or spherical coordi-
nates. Recently, Liao et al. [12] have proposed a third-order compact
finite difference scheme for the Neumann boundary condition.
However, the scheme becomes complicated when applied to multi-
dimensional cases or to cylindrical and spherical coordinate cases.
Zhao and Dai [16,17] have also developed a second-order combined
compact finite difference scheme for the Neumann boundary
son SAS. All rights reserved.
condition. When applying it to cylindrical and spherical coordinate
cases, we found that it reduces the order of accuracy in numerical
solutions. In this study, we consider one-dimensional heat conduc-
tion problems with the Neumann (or insulated) boundary condition
in Cartesian, cylindrical, and spherical coordinates, respectively, and
present a kind of new and accurate finite difference schemes for the
Neumann boundary condition. Combined with the Crank–Nicholson
finite difference method or the higher-order compact finite differ-
ence method, the overall scheme provides much more accurate
numerical solutions. Furthermore, the overall scheme can be proved
to be unconditionally stable. The numerical errors and convergence
rates of the solutions are then tested by several examples.

2. Finite difference schemes

In this section, we consider the Neumann boundary condition in
Cartesian, cylindrical, and spherical coordinates, respectively, and
develop the corresponding finite difference schemes.

CASE 1. We first consider a one-dimensional heat conduction
equation with initial and Neumann boundary conditions in Carte-
sian coordinates:

C
vTðx; tÞ

vt
¼ k

v2Tðx; tÞ
vx2 þ sðx; tÞ; 0 < x < L;0 < t � t0; (1a)

Tðx;0Þ ¼ T0ðxÞ; x˛½0; L�; (1b)
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Nomenclature

a, a*, b, b*, c, c* constants
C volumetric heat capacity [J/(m3K)]
E l2-norm error
h spatial grid size
k conductivity [W/(mK)]
L length [m]
M number of grid points
Pr finite difference operator
r radius coordinate
rj; rjþ1

2
grid point along the r-direction

s source term [J/(m3s)]
T temperature [K]

Tj
n numerical solution of T at (jh, nDt)

t, t0 time [s]
x Cartesian coordinate
xj grid point along the x-direction

Greek symbols
Vr backward finite difference operator
Dt time increment
q1, q2 constants

Subscript, superscript
j the jth grid point
n the nth time level
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vTð0; tÞ
vx

¼ vTðL; tÞ
vx

¼ 0; t˛½0; t0�; (1c)

where T(x, t) is temperature, C is heat capacity, k is conductivity, and
s(x, t) is a source term. To solve the above problem using the finite
difference method, one may employ the Crank–Nicholson scheme
for Eq. (1a) as follows:

C
Tnþ1

j � Tn
j

Dt
¼ k

Tnþ1
j�1 � 2Tnþ1

j þ Tnþ1
jþ1

2h2 þ k
Tn

j�1 � 2Tn
j þ Tn

jþ1

2h2

þ s
nþ1

2
j ; 1 � j � M � 1; ð2Þ

where Tj
n is the numerical approximation of T(jh, nDt). Here, h and

Dt are the spatial and temporal mesh sizes, respectively, and xj ¼ jh,
0 � j � M such that Mh ¼ L. On the other hand, the boundary
condition, Eq. (1c), can be discretized by using the conventional
finite difference method [13–15] such as the first-order accurate
scheme

Tn
0 ¼ Tn

1 ; Tn
M ¼ Tn

M�1; (3)

or the second-order accurate scheme

Tn
�1 ¼ Tn

1 ; Tn
Mþ1 ¼ Tn

M�1; (4)

where Tn
�1 and Tn

Mþ1 are the fictitious temperatures outside the
boundary. It should be pointed out that in order to employ Eq. (4),
one must couple it with Eq. (2) by letting j ¼ 0 and M, so that Tnþ1

�1
and Tnþ1

Mþ1 can be eliminated.
To obtain a new finite difference scheme for the Neumann

boundary condition, Eq. (1c), we first design a mesh, where the
distance between the actual left boundary and x1 is assumed to be
q1h, and the distance between the actual right boundary and xM is
q2h, as shown in Fig. 1. We then express the finite difference
approximation of v2Tðx; tÞ=vx2 at x1, which is the point next to the
left boundary, as follows:

b
v2Tðx1; tÞ

vx2 ¼ a
h2½Tðx2; tÞ � Tðx1; tÞ� �

1
h

vTðx1 � q1h; tÞ
vx

; (5)
h1

h

1x 2x 3x 1Mx Mx

h2

1r 2r 3r 1Mr Mr

Fig. 1. Mesh and locations of grid points.
where a, b, q1 are constants to be determined. If Eq. (5) is rewritten
as follows:

b
v2Tðx1; tÞ

vx2 þ 1
h

vTðx1 � q1h; tÞ
vx

¼ a
h2½Tðx2; tÞ � Tðx1; tÞ�; (5’)

one may see that the above equation is an improvement of the
combined compact finite difference method (where the first and
second-order derivatives are included [16–18]) by introducing the
parameter q1 in order to raise the order of accuracy. The first-order
derivative is kept in Eq. (5) so that the Neumann boundary condi-
tion can be applied directly without discretizing. Expanding each
term of Eq. (5) into Taylor series at x1, we obtain the right-hand-side
(RHS) result of Eq. (5) as follows:

RHS ¼ a
h2

"
hTxðx1; tÞ þ

h2

2
Txxðx1; tÞ þ

h3

6
Tx3ðx1; tÞ

#

� 1
h

"
Txðx1; tÞ � q1hTxxðx1; tÞ þ

q2
1h2

2
Tx3ðx1; tÞ

#
þ O

�
h2�

¼ 1
h
½a� 1�Txðx1; tÞ þ

ha
2
þ q1

i
Txxðx1; tÞ þ

h
2

ha
3
� q2

1

i
Tx3ðx1; tÞ

þ O
�
h2�: ð6Þ

Matching both sides gives

a ¼ 1; b ¼ 1
2
þ

ffiffiffi
3
p

3
; q1 ¼

ffiffiffi
3
p

3
: (7)

Thus, substituting the values of a, b, q1 in Eq. (7) into Eq. (5) and
dropping the truncation error O(h2), we obtain a second-order
finite difference approximation at x1 as

v2Tðx1; tÞ
vx2 z

a
bh2½Tðx2; tÞ � Tðx1; tÞ� �

1
bh

vTðx1 � q1h; tÞ
vx

: (8)

Symmetrically, we can express the finite difference approxi-
mation of v2Tðx; tÞ=vx2 at xM, which is the point next to the right
boundary, as

b*v2TðxM; tÞ
vx2

¼ 1
h

vTðxM þ q2h; tÞ
vx

� a*

h2
½TðxM; tÞ � TðxM�1; tÞ�;

(9)

where a*, b*, q2 are constants to be determined. Again, matching
both sides in Taylor series gives

a* ¼ 1; b* ¼ 1
2
þ

ffiffiffi
3
p

3
; q2 ¼

ffiffiffi
3
p

3
; (10)
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and hence a second-order finite difference approximation at xM for
the right boundary can be obtained as

v2TðxM;tÞ
vx2

z
1

b*h
vTðxMþq2h;tÞ

vx
� a*

b*h2
½TðxM;tÞ�TðxM�1;tÞ�: (11)

If the number of interior grid points M is given, then the grid size
and the coordinates of the grid points can be determined as follows:

h ¼ L
Mþ q1 þ q2 � 1

; xj ¼ ðj� 1þ q1Þh; j ¼ 1;/;M: (12)

Using the Neumann boundary condition, Eq. (1c), one may
simplify Eqs. (9) and (11) to

v2Tðx1; tÞ
vx2 z

a
bh2½Tðx2; tÞ � Tðx1; tÞ�; (13a)

v2TðxM; tÞ
vx2 z� a*

b*h2
½TðxM; tÞ � TðxM�1; tÞ�: (13b)

It should be pointed out that the Neumann boundary condition
is directly used in Eq. (13) without discretizing. Thus, the Crank–
Nicholson scheme for Eq. (1a) at x1 and xM can be written as
follows:

C
Tnþ1

1 � Tn
1

Dt
¼ k

a
b

Tnþ1
2 � Tnþ1

1

2h2 þ k
a
b

Tn
2 � Tn

1

2h2 þ s
nþ1

2
1 ; (14a)

C
Tnþ1

M �Tn
M

Dt
¼ �k

a*

b*

Tnþ1
M �Tnþ1

M�1

2h2 � k
a*

b*

Tn
M �Tn

M�1

2h2 þ s
nþ1

2
M : (14b)

Hence, a new second-order accurate Crank–Nicholson finite
difference scheme consists of Eq. (2) for interior grid points xj

where j ¼ 2, ., M � 1, and Eq. (14) for two grid points x1 and xM. It
can be seen that the truncation error of the new scheme has an
order of Dt2 þ h2 at all grid points ðxj; tnþð1=2ÞÞ; j ¼ 1;/;M.

CASE 2. We now consider a one-dimensional heat conduction
equation with initial and Neumann boundary conditions in cylin-
drical coordinates:

C
vTðr;tÞ

vt
¼ k

r
v

vr

�
r
vTðr;tÞ

vr

�
þsðr;tÞ; 0<r<L; 0< t�t0; (15a)

Tðr;0Þ ¼ T0ðrÞ; r˛½0; L�; (15b)

vTð0; tÞ
vr

¼ vTðL; tÞ
vr

¼ 0; t˛½0; t0�: (15c)

To obtain a second-order accurate finite difference scheme for
the Neumann boundary condition, we similarly design a mesh,
where the distance between the actual left boundary and r1 is
assumed to be q1h, and the distance between the actual right
boundary and rM is q2h, as shown in Fig. 1. We then express the
finite difference approximation of ðv=vrÞðrðvTðr; tÞ=vrÞÞ at r1, which
is the point next to the left boundary, as follows:

b
v

vr

�
r
vTðr;tÞ

vr

�
1
¼ a

h2r3
2
½Tðr2;tÞ�Tðr1;tÞ��

1
h

r1
vTðr1�q1h;tÞ

vr
; (16)

where a, b, q1 are constants to be determined and r3=2¼ r1þðh=2Þ. If
each term of Eq. (16) is expanded into Taylor series at r1, we will
obtain the left-hand-side (LHS) and right-hand-side (RHS) results
of Eq. (16) as follows:

LHS ¼ bTrðr1; tÞ þ br1Trrðr1; tÞ (17a)
and

RHS ¼ a
h2r3

2

"
hTrðr1; tÞ þ

h2

2
Trrðr1; tÞ þ

h3

6
Tr3ðr1; tÞ

#

� 1
h

r1

"
Trðr1; tÞ � q1hTrrðr1; tÞ þ

q2
1h2

2
Tr3ðr1; tÞ

#
þ O

�
h2�

¼ 1
h

h
ar3

2
� r1

i
Trðr1; tÞ þ

ha
2

r3
2
þ r1q1

i
Trrðr1; tÞ

þ h
2

ha
3

r3
2
� r1q2

1

i
Tr3ðr1; tÞ þ O

�
h2�: ð17bÞ

Matching both sides gives
1
h

�
ar3

2
� r1

�
¼ b; (18a)

a
2

r3
2
þ r1q1 ¼ br1; (18b)

a
3

r3
2
� r1q2

1 ¼ 0: (18c)

Dividing Eq. (18a) by Eq. (18b), replacing ar3=2 with 3r1q1
2 from

Eq. (18c) and then using the fact r1 ¼ q1h, we obtain a quadratic
equation with respect to q1 as

6q2
1 � 3q1 � 4 ¼ 0: (19)

Solving the above equation for q1 with q1 � 0, one may obtain

q1 ¼
3þ

ffiffiffiffiffiffiffiffiffi
105
p

12
;

a
b
¼ r1q1

r3
2

�
q1
2 þ

1
3

�: (20)

Thus, a second-order finite difference approximation at r1 can be
obtained by dropping the truncation error O(h2):

v

vr

�
r
vTðr; tÞ

vr

�
1
z

a
bh2 r3

2
½Tðr2; tÞ � Tðr1; tÞ� �

1
bh

r1
vTðr1 � q1h; tÞ

vr
:

(21)

We have noted that q1 >1 in Eq. (20) while q1 <1 in Eq. (7). This
is probably because, in the cylindrical coordinates, the term
ðv=vrÞðrðvTðr; tÞ=vrÞÞ ¼ rTrrðr; tÞ þ Trðr; tÞ includes the first-order
derivative of T(r, t).

Symmetrically, we express the finite difference approximation
of ðv=vrÞðrðvTðr; tÞ=vrÞÞ at rM, which is the point next to the right
boundary, as

b* v

vr

�
r
vTðr; tÞ

vr

�
M
¼ 1

h
rM

vTðrM þ q2h; tÞ
vr

� a*

h2rM�1
2
½TðrM; tÞ

� TðrM�1; tÞ�; (22)

where a*, b*, q2 are constants to be determined and
rM�ð1=2Þ ¼ rM � ðh=2Þ. Again, matching both sides in Taylor series
gives

1
h

�
rM � a*rM�1

2

�
¼ b*; (23a)

rMq2 þ
a*

2
rM�1

2
¼ b*rM; (23b)
rMq2
2 �

a*

3
rM�1

2
¼ 0: (23c)
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Dividing Eq. (23a) by Eq. (23b) and then replacing a*rM�ð1=2Þ by
3rMq2

2 from Eq. (23c), we obtain a quadratic equation with respect to
q2 as

ð6rM þ 3hÞq2
2 þ 2hq2 � 2rM ¼ 0: (24)

If the number of interior grid points M is given, then the grid size
and the coordinates of the grid points can be determined as follows:

h ¼ L
Mþ q1 þ q2 � 1

; rj ¼ ðj� 1þ q1Þh; j ¼ 1;/;M: (25)

Substituting Eq. (25) into Eq. (24) and then solving for q2 with
q2 � 0, one may obtain

q2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6ð2q1 þ 2M � 1Þðq1 þM � 1Þ

p
� 1

3ð2q1 þ 2M � 1Þ ; and

a*

b*
¼ rMq2

rM�1
2

�
q2
2 þ

1
3

�; ð26Þ

and, hence, a second-order finite difference approximation at rM

can be obtained:

v

vr

�
r
vTðr; tÞ

vr

�
M

z
1

b*h
rM

vTðrM þ q2h; tÞ
vr

� a*

b*h2
rM�1

2
½TðrM; tÞ

�TðrM�1; tÞ�: (27)

Using the Neumann boundary condition, Eq. (15c), one may
simplify Eqs. (21) and (27) to

v

vr

�
r
vTðr; tÞ

vr

�
1
z

a
bh2r3

2
½Tðr2; tÞ � Tðr1; tÞ�; (28a)

v

vr

�
r
vTðr; tÞ

vr

�
M

z� a*

b*h
rM�1

2
½TðrM; tÞ � TðrM�1; tÞ�: (28b)

Thus, the Crank–Nicholson scheme for Eq. (15a) can be written
as follows:

C
Tnþ1

1 �Tn
1

Dt
¼ k

a
br1

r3
2

Tnþ1
2 �Tnþ1

1

2h2 þk
a

br1
r3

2

Tn
2 � Tn

1

2h2 þ s
nþ1

2
1 ; (29a)

C
Tnþ1

j � Tn
j

Dt
¼ k

1
2h2rj

h
rjþ1

2

�
Tnþ1

jþ1 � Tnþ1
j

�
� rj�1

2

�
Tnþ1

j � Tnþ1
j�1

�i

þ k
1

2h2rj

h
rjþ1

2

�
Tn

jþ1 � Tn
j

�
� rj�1

2

�
Tn

j � Tn
j�1

�i

þ s
nþ1

2
j ; 2 � j � M � 1; ð29bÞ

C
Tnþ1

M �Tn
M

Dt
¼�k

a*

b*rj
rM�1

2

Tnþ1
M �Tnþ1

M�1

2h2 �k
a*

b*rj
rM�1

2

Tn
M�Tn

M�1

2h2 þs
nþ1

2
M :

(29c)

Again, it can be seen that the truncation error of the new scheme
has an order of Dt2 þ h2 at all grid points ðrj;tnþð1=2ÞÞ;j¼1;/;M.

It should be pointed out that, in the ghost point method [13–15],
the term ð1=rÞðv=vrÞðrðvTðr; tÞ=vrÞÞ in Eq. (15a) is first evaluated
based on the boundary condition, Eq. (15c), to obtain

lim
r/0
½ð1=rÞðv=vrÞðrðvTðr; tÞ=vrÞÞ� ¼ lim

r/0

h
v2Tðr;tÞ

vr2 þ 1
r
vTðr;tÞ

vr

i
¼ 2v2Tð0;tÞ

vr2

at the boundary point r ¼ 0, and then the term 2ðv2Tð0; tÞ=vr2Þ is

discretized to be ð1=h2Þ½ðTnþ1
1 � 2Tnþ1

0 þ Tnþ1
�1 Þ þ ðT

n
1 � 2Tn

0 þ Tn
�1Þ�,

where T�1
nþ1 ¼ T1

nþ1 and T�1
n ¼ T1

n. However, the ghost point
scheme cannot be generalized to multi-dimensional heat conduc-
tion cases such as ðvTðr;f; tÞ=vtÞ ¼ ðC=rÞðv=vrÞðrðvTðr;f; tÞ=vrÞÞþ
ðC=r2Þðv2Tðr;f; tÞ=vf2Þ; because lim

r/0
½ð1=r2Þðv2Tðr;f; tÞ=vf2Þ� is

difficult to find. On the other hand, our present scheme can be
easily generalized to the multi-dimensional heat conduction
equation because we avoid the approximation at r ¼ 0.

CASE 3. We consider a one-dimensional heat conduction equation
with initial and Neumann boundary conditions in spherical
coordinates:

C
vTðr;tÞ

vt
¼ k

r2

v

vr

�
r2vTðr;tÞ

vr

�
þsðr;tÞ; 0<r<L;0<t�t0; (30a)

Tðr;0Þ ¼ T0ðrÞ; r˛½0; L�; (30b)

vTð0; tÞ
vr

¼ vTðL; tÞ
vr

¼ 0; t˛½0; t0�: (30c)

Similarly, we use a mesh as shown in Fig. 1 and express the finite
difference approximation of ðv=vrÞðr2ðvTðr; tÞ=vrÞÞ at r1 as follows:

b
v

vr

�
r2vTðr;tÞ

vr

�
1
¼ a

h2 r2
3
2
½Tðr2;tÞ�Tðr1;tÞ��

1
h

r2
1

vTðr1�q1Dr;tÞ
vr

;

(31)

where a, b, q1 are constants to be determined and r3=2¼ r1þðh=2Þ.
Again, if each term of Eq. (31) is expanded into Taylor series at r1, we
will obtain the left-hand-side (LHS) and right-hand-side (RHS)
results of Eq. (31) as follows:

LHS ¼ 2br1Trðr1; tÞ þ br2
1Trrðr1; tÞ; (32a)

RHS ¼ a
h2

r2
3
2

"
hTrðr1; tÞ þ

h2

2
Trrðr1; tÞ þ

h3

6
Tr3ðr1; tÞ

#

� 1
h

r2
1

"
Trðr1; tÞ � q1hTrrðr1; tÞ þ

q2
1h2

2
Tr3ðr1; tÞ

#
þ O

�
h2�

¼ 1
h

"
ar2

3
2
� r2

1

#
Trðr1; tÞ þ

"
a
2

r2
3
2
þ r2

1q1

#
Trrðr1; tÞ

þ h
2

"
a
3

r2
3
2
� r2

1q2
1

#
Tr3ðr1; tÞ þ O

�
h2�: ð32bÞ

Matching both sides gives

1
h

�
ar2

3
2
� r2

1

�
¼ 2br1; (33a)

a
2

r2
3
2
þ r2

1q1 ¼ br2
1 ; (33b)
a
3

r2
3
2
� r2

1q2
1 ¼ 0: (33c)

Dividing Eq. (33a) by Eq. (33b) and then replacing ar2
3=2 with

3r1
2q1

2 from Eq. (33c), we obtain a quadratic equation with respect to
q1 as

q2
1 � q1 � 1 ¼ 0 (34)

Solving the above equation for q1 with q1 � 0, one may obtain

q1 ¼
ffiffiffi
5
p
þ 1

2
;

a
b
¼

r2
1q1

r2
3
2

�
q1
2 þ

1
3

�: (35)
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It can be seen that q1>1 in Eq. (35), which is similar to the one in
Eq. (21). Thus, a second-order finite difference approximation at r1

can be obtained by dropping the truncation error O(h2):

v

vr

�
r2vTðr; tÞ

vr

�
1
z

a
bh2 r2

3
2

	
Tðr2; tÞ � Tjðr1; tÞ



� 1

bh
r2

1
vTðr1 � q1h; tnÞ

vr
: (36)

Symmetrically, we express the finite difference approximation
of ðv=vrÞðr2ðvTðr; tÞ=vrÞÞ at rM, which is the point next to the right
boundary, as

b* v

vr

�
r2vTðr; tÞ

vr

�
M
¼ 1

h
r2

M
vTðrM þ q2h; tÞ

vr

� a*

h2r2
M�1

2
½TðrM; tÞ � TðrM�1; tÞ�; ð37Þ

where a*, b*, q2 are constants to be determined and rM�ð1=2Þ ¼
rM � ðh=2Þ. Again, matching both sides in Taylor series gives

1
h

�
r2

M � a*r2
M�1

2

�
¼ 2b*rM; (38a)

r2
Mq2 þ

a*

2
r2

M�1
2
¼ b*r2

M ; (38b)

r2
Mq2

2 �
a*

3
r2

M�1
2
¼ 0: (38c)

Dividing Eq. (38a) by Eq. (38b) and then replacing a*r2
M�ð1=2Þ

with 3rM
2 q2

2 from Eq. (38c), we obtain a quadratic equation with
respect to q2 as

ð3rM þ 3hÞq2
2 þ 2hq2 � rM ¼ 0: (39)

If the number of interior grid points M is given, then the grid size
and the coordinates of the grid points can be determined as follows:

h ¼ L
Mþ q1 þ q2 � 1

; rj ¼ ðj� 1þ q1Þh; j ¼ 1;/;M: (40)

Thus, we obtain

q2¼
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1
3

�: (41)

Hence, the Crank–Nicholson scheme for Eq. (30a) coupled with
Eq. (30c) can be written as follows:
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j ; 2 � j � M � 1; ð42bÞ
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Again, it can be seen that the truncation error of the new scheme
has an order of Dt2 þ h2 at all grid points ðrj; tnþð1=2ÞÞ; j ¼ 1;/;M.
It should be pointed out that, in general, there is no boundary
condition at the center r ¼ 0. Therefore, the value of T0

n at center
needs to be determined. To this end, one may follow the idea in
[14], multiply Eq. (30a) by r2 and then integrate it over the interval
[0, 3], where 3 is a small constant. This givesZ3

0

C
vTðr; tÞ

vt
r2dr ¼ k

Z3

0

v

vr

�
r2vTðr; tÞ

vr

�
dr þ

Z3

0

sðr; tÞr2dr: (43)

Replacing vTðr; tÞ=vt and sðr; tÞ in Eq. (43) with those corre-
sponding values at the center r ¼ 0, and then calculating the inte-
grals in Eq. (43), we obtain

C
vTð0; tÞ

vt
$
33

3
¼ k32vTð3; tÞ

vr
þ sð0; tÞ3

3

3
: (44)

By choosing 3 ¼ h=2, a second-order finite difference approxi-
mation at the center r ¼ 0 can be obtained as
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0 : (45)

For this case, one may choose q1 ¼ 1 and hence the scheme
consists of Eq. (42b) with 1 � j � M � 1, Eq. (42c) and Eq. (45).

CASE 4. The idea lying behind the above method can be applied to
develop higher-order compact finite difference schemes where the
Neumann boundary condition is considered. For example, in CASE
1, if the second-order derivative Txx is approximated by a fourth-
order implicit compact finite difference scheme [16,19]:
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10
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�

; (46)

at the interior points xj, 1 � j � M � 1, then the values of Txx at the
boundary points should be provided, which are usually inconve-
nient to obtain. To overcome this difficulty, we may employ
a combined compact finite difference approximation at x1 based on
the mesh shown in Fig. 1:

aTxxðx1;tÞþbTxxðx2;tÞ ¼ �
1
h

Txðx1�q1h;tÞþ c
h2½Tðx2;tÞ�Tðx1;tÞ�;

(47)

where a, b, c and q1 are constants to be determined, and q1 � 0. We
expand each term of Eq. (47) into Taylor series at x1 and obtain the
left-hand-side (LHS) and right-hand-side (RHS) results of Eq. (47)
as follows:
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and

RHS¼�1
h

"
Txðx1;tÞ�q1hTxxðx1;tÞþ

q2
1h2

2
Tx3ðx1;tÞ�

q3
1h3

6
Tx4ðx1;tÞ

#

þ c
h2

�
hTxðx1;tÞþ

h2

2
Txxðx1;tÞþ

h3

6
Tx3ðx1;tÞþ

h4

24
Tx4ðx1;tÞ

�
þO
�
h3�

¼ðc�1Þ1
h

Txðx1;tÞþ
�

q1þ
c
2

�
Txxðx1;tÞþ

�
�q2

1
2
þc

6

�
hTx3ðx1;tÞ

þ
�q3

1
3
þ c

12

�h2

2
Tx4ðx1;tÞþO

�
h3�: ð48bÞ



W. Dai / International Journal of Thermal Sciences 49 (2010) 571–579576
Matching both sides gives

c� 1 ¼ 0; (49a)

aþ b ¼ q1 þ
c
2
; (49b)

b ¼ �q2
1

2
þ c

6
; (49c)

b ¼ q3
1

3
þ c

12
: (49d)

From Eqs. (49a), (49c) and (49d), we obtain a polynomial of
degree 3 with respect to q1 as

4q3
1 þ 6q2

1 � 1 ¼ 0: (50)

Solving the above equation for q1 with q1 � 0, one may obtain
q1 ¼ ð

ffiffiffi
3
p
� 1Þ=2 and hence

a ¼
ffiffiffi
3
p

4
þ 1

3
; b ¼

ffiffiffi
3
p

4
� 1

3
; c ¼ 1: (51)

Thus, a third-order combined compact finite difference scheme
at x1 can be obtained by dropping the truncation error O(h3) as

aTxxðx1; tÞ þ bTxxðx2; tÞz�
1
h

Txðx1 � q1h; tÞ þ c
h2½Tðx2; tÞ

�Tðx1; tÞ�: (52)

Similarly, we employ a combined compact finite difference
approximation at xM, which is the point next to the right boundary, as

b*TxxðxM�1; tÞ þ a*TxxðxM; tÞ ¼
1
h

TxðxM þ q2h; tÞ � c*

h2½TðxM; tÞ

� TðxM�1; tÞ�; ð53Þ

where a*, b*, c* and q2 are constants to be determined, and obtain
a third-order compact finite difference scheme at xM
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3
; c* ¼ 1: (55)

If the number of interior grid points M is given, then the grid size
and the coordinates of the grid points can be determined as follows:

h ¼ L
Mþ q1þ q2 � 1

; xj ¼ ðj� 1þ q1Þh; j ¼ 1;/;M: (56)

Hence, a higher-order accurate Crank–Nicholson type of
compact finite difference scheme for the heat conduction problem
given in CASE 1 can be written as
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It can be seen that the truncation error of the new scheme
has an order of Dt2 þ h4 at interior grid points ðxj; tnþð1=2ÞÞ; j ¼
2;/;M � 1 [16,19], and an order of Dt2 þ h3 at grid points x1

and xM. Similarly, one may apply this method to the cylindrical
and spherical coordinate cases and develop higher-order combined
compact finite difference schemes for Neumann boundary
conditions.

3. Stability

We now show that the above obtained schemes are uncondi-
tionally stable. Because of the limit on text length, we only show
that the scheme developed in CASE 3 is unconditionally stable. One
may use a similar argument to obtain that the new numerical
schemes in CASES 1 and 2 are unconditionally stable. For simplicity,
we first introduce two finite difference operators:
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We then multiply Eq. (42a) by 2r2
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Denoting Uj ¼ Tj
nþ1 þ Tj

n for the purpose of simple notation,
the first three terms (FTT) on the right-hand-side can be
simplified to
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By Cauchy-Schwartz’s inequality (2ab � 3a2 þ 1
3b2; 3 > 0 [20]),

we have

2s
nþ1

2
j

h
Tnþ1

j þ Tn
j

i
� C

h
Tnþ1

j þ Tn
j

i2
þ1

C

h
s

nþ1
2

j

i2

� 2C
�h

Tnþ1
j

i2
þ
h
Tn

j

i2�
þ 1

C

h
s

nþ1
2

j

i2
; (61)

for any j. Substituting Eqs. (60) and (61) into Eq. (59) and dropping
the negative term �h
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Multiplying Eq. (62) by Dt and letting
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Eq. (62) can be further simplified to
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Using the inequalities ð1þ3Þn�en3 for 3 > 0 and ð1�3Þ�1�e23

for 0< 3�1=2, we obtain ð1þDtÞnþ1�eðnþ1ÞDt and ð1�DtÞ�1�e2Dt ;

and hence, when Dt is sufficiently small, the solution to the present
scheme satisfies
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for any 0 � (n þ 1)Dt � t0. Hence, for any 0 � nDt � t0, we obtain
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implying that the scheme is unconditionally stable with respect to
the initial condition and source term.

For the stability analysis of the higher-order accurate compact
finite difference scheme, Eq. (57), one may use a very similar matrix
analysis as described in [16] and obtain that the scheme is
unconditionally stable. We omit the proof here because it is quite
straightforward.

4. Numerical examples

To verify the accuracy of our numerical schemes, we first
consider a simple scenario as follows:

vTðx; tÞ
vt

¼ v2Tðx; tÞ
vx2 ; 0 < x < 1; t > 0; (67a)

Tðx;0Þ ¼ cosðpxÞ; x˛½0;1�; (67b)

vTð0; tÞ
vx

¼ vTð1; tÞ
vx

¼ 0; t � 0; (67c)

where the analytical solution is Tðx; tÞ ¼ e�p2t cosðpxÞ: We
employed the Crank–Nicholson scheme, Eq. (2), with the first-order
finite difference scheme for the Neumann boundary condition,
Eq. (3); the Crank–Nicholson scheme, Eq. (2), with the new second-
order finite difference scheme for the Neumann boundary condi-
tion, Eq. (14); and the higher-order compact scheme, Eq. (57), to
solve the above problem, respectively. Since these three schemes
are implicit, the Thomas algorithm [14] was used for solving the
obtained tridiagonal linear systems.

Because the analytical solution T(x, t) becomes very small when t
is large, the maximum of l2-norm errors of the numerical solutions
as compared with the analytical solution was computed for
0 � t � 1 based on the formula

EðM;DtÞ ¼ max
0�nDt�1:0
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�i2

vuut : (68)

To obtain the convergence rate with respect to the spatial
variable, we may assume that E(M, Dt) ¼ O(Dtp þ hq). If Dt is
small enough, then E(M, Dt) z O(hq). Consequently, EðM;DtÞ=
Eð2M;DtÞz2q and hence qzlog2½EðM;DtÞ=Eð2M;DtÞ� is the
convergence rate with respect to the spatial variable. Likewise,
pzlog2½EðM;2DtÞ=EðM;DtÞ� is the convergence rate with respect to
the temporal variable.

In our computation, we first chose the number of grid points to
be M ¼ 51, 101, and 201 for the Crank–Nicholson scheme with Eq.
(3), and the number of interior grid points to be M ¼ 51, 101, and
201 for the Crank–Nicholson scheme with Eq. (14). On the other
hand, we chose a smaller number of interior grid points to be
M ¼ 11, 21, and 41 for the higher-order compact scheme since it is
higher-order scheme. For all three cases, the time increment was
set to be Dt ¼ 10�6 and log2½EðM;DtÞ=Eð2M;DtÞ� was calculated for
the convergence rate with respect to the spatial variable.

Table 1 shows the maximal l2-norm errors of the numerical
results and convergence rates when 0�nDt�1.0. It can be seen from
the table that the convergence rate of the Crank–Nicholson scheme
with Eq. (3) is about 1.0 and the one for the Crank–Nicholson scheme
with Eq. (14) is about 2.0, while the higher-order compact scheme
gives the highest convergence rate. By comparing the maximal
l2-norm errors of solutions in Table 1 among these three schemes,
we can see that the Crank–Nicholson scheme with Eq. (14) provides
much more accurate solutions than the Crank–Nicholson scheme
with Eq. (3) and the higher-order compact scheme gives excellent
solutions by using a smaller number of grid points.



Table 1
Maximal l2-norm errors, E(M, Dt), and convergence rates when Dt ¼ 10�6 and
0 � t � 1.0 for the first scenario.

(a)

Grids CN with
Eq. (3) E(M, Dt)

CN with
Eq. (3) rate

CN with
Eq. (14) E(M, Dt)

CN with
Eq. (14) rate

51 1.03041 � 10�2 – 8.03048 � 10�5 –
101 5.20193 � 10�3 0.986 2.07331 � 10�5 1.954
201 2.61315 � 10�5 0.993 5.27770 � 10�6 1.974

(b)

Grids Compact scheme
Eq. (57) E(M, Dt)

Compact scheme
Eq. (57) rate

11 9.96415 � 10�6 –
21 6.59230 � 10�7 3.918
41 5.84852 � 10�8 3.494

Table 3
Maximal l2-norm errors, E(M, Dt), and convergence rates when (a) Dt ¼ 10�6, (b)
M ¼ 1, 000, 001, and 0 � t � 1.0 for the second scenario.

(a)

Grid CN with
Eq. (3) E(M, Dt)

CN with
Eq. (3) rate

Scheme
Eq. (29) E(M, Dt)

Scheme
Eq. (29) rate

51 1.99313 � 10�2 – 1.91822 � 10�4 –
101 9.98212 � 10�3 0.998 5.00483 � 10�5 1.938
201 4.99518 � 10�3 0.999 1.27701 � 10�5 1.971

(b)

Dt CN with Eq. (3)
E(M, Dt)

CN with
Eq. (3) rate

Scheme
Eq. (29) E(M, Dt)

Scheme
Eq. (29) rate

0.01 3.95927 � 10�4 – 3.95949 � 10�4 –
0.005 9.89155 � 10�5 2.001 9.89524 � 10�5 2.001
0.0025 2.47098 � 10�5 2.001 2.47348 � 10�5 2.000
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To obtain the convergence rate p, we chose the number of grid
points to be M¼ 1, 000, 001 for the Crank–Nicholson scheme with Eq.
(3) or Eq. (14), and M ¼ 1, 001 for the higher-order compact scheme.
On the other hand, the time increment was set to be Dt¼ 0.01, 0.005,
0.0025, respectively, and log2½EðM;2DtÞ=EðM;DtÞ�was calculated. For
this case, we expect that p is about 2 for all three schemes because
they take the average of the numerical solutions in two time-levels
and hence are second-order accurate with respect to the temporal
variable. Table 2 shows the maximal l2-norm errors of the numerical
solutions and convergence rates when 0 � nDt � 1.0. As is expected,
we see from the table that the convergence rates obtained from all
three schemes are about the same and are about 2.0. Furthermore, it
can be seen from Table 2 that although the maximal l2-norm errors
obtained from all three schemes are about the same, the number of
grid points for the Crank–Nicholson scheme is about square of the
number of the grid points for the compact scheme.

The second scenario is considered to be a dimensionless heat
conduction in cylindrical coordinates:

vTðr; tÞ
vt

¼ 1
r

v

vr

�
r
vTðr; tÞ

vr

�
þ p

r
e�p2t sinðprÞ; 0 < r < 1; t > 0;

(69a)

Tðr;0Þ ¼ cosðprÞ; r˛½0;1�; (69b)

vTð0; tÞ
vr

¼ vTð1; tÞ
vr

¼ 0; t � 0; (69c)

where the analytical solution is Tðr; tÞ ¼ e�p2t cosðprÞ: For this
case, the new scheme, Eqs. (29a)–(29c), and the Crank–Nicholson
scheme, Eq. (29b), with Eq. (3) were employed to solve the above
problem, respectively. We chose the number of grid points to be
Table 2
Maximal l2-norm errors, E(M, Dt), and convergence rates when (a) M ¼ 1, 000, 001
for both CN schemes, (b) M ¼ 1, 001 for the compact scheme, and 0 � t � 1.0 for the
first scenario.

(a)

Dt CN with
Eq. (3) E(M, Dt)

CN with
Eq. (3) rate

CN with
Eq. (14) E(M, Dt)

CN with
Eq. (14) rate

0.01 2.10939 � 10�4 – 2.10422 � 10�4 –
0.005 5.23540 � 10�5 2.011 5.18323 � 10�5 2.021
0.0025 1.27009 � 10�5 2.043 1.21767 � 10�5 2.090

(b)

Dt Compact scheme
Eq. (57) E(M, Dt)

Compact scheme
Eq. (57) rate

0.01 2.11407 � 10�4 –
0.005 5.27988 � 10�5 2.001
0.0025 1.31865 � 10�5 2.001
M ¼ 51, 101, and 201 for the Crank–Nicholson scheme with Eq. (3),
and the number of interior grid points to be M¼ 51, 101, and 201 for
the new scheme. Again, the time increment was set to be Dt¼ 10�6.

Table 3(a) shows the maximal l2-norm errors of the numerical
results and convergence rates when 0 � nDt � 1.0. It can be seen
from the table that the convergence rate of the Crank–Nicholson
scheme with Eq. (3) is about 1.0, while the one for the new scheme
is about 2.0. Furthermore, by comparing the maximal l2-norm
errors of solutions between these two schemes in Table 3(a), we see
that the new scheme provides much more accurate solutions than
the Crank–Nicholson scheme with Eq. (3).

Again, we chose the number of grid points to be M¼ 1, 000, 001
for both schemes and set the time increment to be Dt ¼ 0.01, 0.005,
0.0025, respectively, to obtain the convergence rate p. Results
indicate that the convergence rates obtained from both schemes
are about the same and are about 2.0, as shown in Table 3(b).

The third scenario is considered to be a dimensionless heat
conduction in spherical coordinates:

vTðr; tÞ
vt

¼ 1
r2

v

vr

�
r2vTðr; tÞ

vr

�
þ 2p

r
e�p2t sinðprÞ; 0< r < 1; t > 0;

(70a)

Tðr;0Þ ¼ cosðprÞ; r˛½0;1�; (70b)

vTð0; tÞ
vr

¼ vTð1; tÞ
vr

¼ 0; t � 0; (70c)

where the analytical solution is Tðr; tÞ ¼ e�p2t cosðprÞ: For this case,
the new scheme, Eqs. (42a)–(42c), and the Crank–Nicholson scheme,
Eq. (42b), with Eq. (3) were employed to solve the above problem,
respectively. We chose the same conditions as those in the second
scenario and the result is shown in Table 4. It can be seen from Table
Table 4
Maximal l2-norm errors, E(M, Dt), and convergence rates when (a) Dt ¼ 10�6, (b)
M ¼ 1, 000, 001, and 0 � t � 1.0 for the third scenario.

(a)

Grid CN with Eq. (3)
E(M, Dt)

CN with
Eq. (3) rate

Scheme
Eq. (42) E(M, Dt)

Scheme
Eq. (42) rate

51 3.01995 � 10�2 – 2.01446 � 10�4 –
101 1.50487 � 10�2 1.005 6.80595 � 10�5 1.566
201 7.51171 � 10�3 1.002 2.22334 � 10�5 1.614

(b)

Dt CN with Eq. (3)
E(M, Dt)

CN with
Eq. (3) rate

Scheme Eq. (42)
E(M, Dt)

Scheme
Eq. (42) rate

0.01 5.68601 � 10�4 – 5.68765 � 10�4 –
0.005 1.41817 � 10�4 2.003 1.41988 � 10�4 2.002
0.0025 3.53267 � 10�5 2.005 3.55045 � 10�5 2.000
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4(a) that the convergence rate of the Crank–Nicholson scheme with
Eq. (3) is about 1.0, while the one for the new scheme is about 1.6.
Again, by comparing the maximal l2-norm errors of solutions between
these two schemes in Table 4(a), we see that the new scheme provides
much more accurate solutions than the Crank–Nicholson scheme with
Eq. (3). Table 4(b) shows that the convergence rates obtained from
both schemes are about the same and are about 2.0.
5. Conclusion

In this study, we have presented a kind of new and accurate finite
difference schemes for the Neumann (insulated) boundarycondition in
Cartesian, cylindrical, and spherical coordinates, respectively. Coupled
with the Crank–Nicholson finite difference method or the higher-order
compact finite difference method, the new scheme is proved to be
unconditionally stable and provides much more accurate numerical
solutions. The numerical errors and convergence rates of the solutions
are tested by several examples. Results show that the maximal l2-norm
errors of the numerical solutions obtained by the present method are
much smaller than those obtained by the conventional method, and,
also, the convergence rates of the present method are higher with
respect to the spatial variable. The method can be readily applied to
multi-dimensional cases. Further research will be focused on the
applications of the new method to practical engineering problems,
such as ultrafast heat transfer and reaction-diffusions.
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